
1

EA-01-02-G
State CIO Adopted: June 28, 2023
Sunset Review: June 28, 2026

Replaces:
N/A

SOFTWARE QUALITY BEST PRACTICES

See Also:
RCW 43.105.054 WaTech Governance
RCW 43.105.052 Powers and duties of agency—Application to higher education, legislature, and judiciary.
RCW 43.105.020 (22) “State agency”

Introduction:

This document outlines the software quality standards and best practices to be followed
by development teams at Washington state. These standards aim to ensure the delivery of
high-quality software products that meet customer expectations and align with ISO/IEC
25010 and ISO/IEC 25023.

Scope:

Agencies are encouraged to follow these guidelines. For gated projects subject to section
701 of the Washington State legislative budget, sections 1-4 are given priority review for
the gating process.

1. Process and Documentation:

a. Follow a defined software development process that encompasses requirements for
gathering, designing, coding, testing, and deployment.

b. Maintain comprehensive and up-to-date documentation, including requirements
specifications, architectural designs, user manuals, and test plans.

2. Code Quality and Standards:

a. Adhere to a set of coding standards that define naming conventions, code structure,
indentation, and formatting to enhance code readability and maintainability. Ensure
that coding standards are easily accessible and well- documented for all developers.

b. Follow a modular and component-based approach to design and development,
promoting reusability and maintainability of code.

https://app.leg.wa.gov/RCW/default.aspx?cite=43.105.054
https://app.leg.wa.gov/RCW/default.aspx?cite=43.105.052
https://app.leg.wa.gov/rcw/default.aspx?cite=43.105.020
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35747.html

2

c. Use meaningful and self-explanatory variable, function, and class names to enhance
code readability. Avoid ambiguous or cryptic names.

d. Write code that is concise and follows the principle of "Don't Repeat Yourself" (DRY)
to minimize duplication and improve maintainability.

e. Break down complex logic into smaller, manageable functions or methods, each
responsible for a specific task or functionality.

f. Implement error handling and exception management mechanisms to handle
unexpected situations and ensure graceful degradation.

g. Strive for code simplicity and clarity by avoiding unnecessary complexity or
convoluted logic. Favor straightforward solutions over overly clever or complex
ones.

h. Ensure that code is well-commented, providing explanations for non-obvious
sections, complex algorithms, or important business rules. Follow consistent
commenting styles and use descriptive comments.

i. Regularly refactor code to improve its structure and enhance readability. Utilize code
analysis tools or linters to identify potential issues or violations of coding standards.

j. Write unit tests to validate individual components or functions and ensure their
correctness. Aim for comprehensive test coverage, including both positive and
negative test cases.

k. Maintain a clean and organized codebase, adhering to directory structure
conventions and separation of concerns principles.

l. Continuously review and optimize code performance, identifying and addressing
bottlenecks or inefficiencies. Consider using profiling tools to identify areas that
require optimization.

m. Stay updated with new language features, best practices, and emerging coding
standards relevant to the programming languages and frameworks used in your
project.

n. Foster a collaborative coding culture where team members can provide feedback,
conduct code reviews, and suggest improvements. Encourage open communication
and constructive criticism.

3. Measurement and Evaluation- ISO/IEC 5055 based guideline:

3

ISO/IEC 5055:2021 is an international standard for measuring the quality and
integrity of a software system by analyzing its internal construction to detect
several structural weaknesses.

These weaknesses are related to four business-critical factors:

• Security

• Reliability

• Performance Efficiency

• Maintainability

The standard provides a set of automated source code quality measures that can
be used to evaluate and improve the software product during development and
maintenance.

The following guidelines are based on the ISO/IEC 5055 standard and aim to help
software developers and managers achieve high-quality software products that
are trustworthy, dependable, and resilient.

a. Use static analysis tools that implement the ISO 5055 standard to detect,
report, and measure the weaknesses across the entire technology stack
and its interconnections. The tools should provide a comprehensive
coverage of the weaknesses specified in the standard and support the
languages and platforms used in the software system.

b. Establish quality goals and thresholds for each of the four factors (Security,
Reliability, Performance Efficiency, and Maintainability) based on the
business requirements and risks of the software system. The quality goals
should be expressed in terms of the ISO 5055 measures, such as the
number
or density of weaknesses per factor or the sigma level achieved by the
product.

c. Monitor and track the quality of the software system throughout its life
cycle using the ISO 5055 measures. Compare the actual quality measures
with the quality goals and thresholds and identify any gaps or deviations.
Use dashboards and reports to communicate the quality status and trends
to all stakeholders.

d. Prioritize and remediate the weaknesses detected by the ISO 5055
measures according to their severity and impact on the four factors. Focus
on eliminating the most dangerous weaknesses that could result in
unacceptable operational risks or excessive costs. For example, 'Ban
Unintended Paths' is an architectural weakness that violates security and
data protection controls by allowing a path from the user interface directly
to the database without passing through user authentication routines.

https://www.iso.org/standard/80623.html

4

e. Apply good architectural and coding practices to prevent or reduce the
introduction of new weaknesses in the software system by following the
coding standards and guidelines that are consistent with the ISO 5055
measures to avoid common pitfalls and anti-patterns that could
compromise the quality of the software system.

f. Use code reviews and testing to verify and validate the quality of the
software system.

4. Testing and Quality Assurance:

a. Conduct thorough testing throughout the software development lifecycle, including
unit testing, integration testing, system testing, and user acceptance testing.

b. Use appropriate testing techniques and methodologies to address the identified
quality characteristics and sub characteristics.

c. Consider the use of automated testing tools and frameworks to improve efficiency
and effectiveness.

5. Defect and Issue Management:

a. Utilize a robust defect tracking system to capture and manage software defects and
issues effectively.

b. Prioritize and address reported defects promptly, ensuring appropriate
communication and resolution within the defined timelines.

c. Establish a process for root cause analysis to identify and address underlying issues
contributing to recurring defects.

6. Security and Compliance:

a. Implement secure coding practices to prevent common vulnerabilities, such as input
validation errors, injection attacks, and insecure access control.

b. Stay up to date with industry security standards and guidelines to ensure
compliance with relevant regulations, such as CJIS, IRS Pub 1075, and HIPAA.

c. Conduct regular security assessments and penetration testing to identify and
mitigate potential security risks.

7. Continuous Improvement:

a. Foster a culture of continuous improvement by encouraging feedback and
suggestions from team members.

5

b. Conduct periodic retrospectives to reflect on the software development
process and identify areas for improvement.

c. Stay informed about advancements in software development practices, tools,
and technologies to enhance software quality and efficiency.

8. Training and Knowledge Sharing:

a. Provide training and resources to ensure that team members are equipped
with the necessary skills and knowledge to meet software quality standards.

b. Encourage knowledge sharing within the team through technical
presentations, workshops, and collaborative platforms.

9. Compliance and Audit:

a. Regularly review and assess compliance with software quality standards,
both internally and through external audits if required.

b. Maintain records and evidence of compliance to demonstrate adherence to
established standards.

REFERENCES

1. Definition of Terms Used in WaTech Policies and Reports.
2. SB 5187-S.S.L Section 701 (2) and Section 701(9).
3. ISO/IEC 25010:2011 - Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — System and
software quality models.

4. ISO/IEC 25023:2016 - Systems and software engineering — Systems and
software Quality Requirements and Evaluation (SQuaRE) — Measurement of
system and software product quality.

5. ISO/IEC 5055:2021 - Information technology — Software measurement —
Software quality measurement — Automated source code quality measures.

CONTACT INFORMATION

• For questions about this guideline, please email the WaTech Policy Mailbox.

https://watech.wa.gov/policies/definition-terms-used-policies-and-reports
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35747.html
https://www.iso.org/standard/35747.html
https://www.iso.org/standard/35747.html
https://www.iso.org/standard/80623.html
https://www.iso.org/standard/80623.html
mailto:watechmiociopolicy@watech.wa.gov

	REFERENCES
	CONTACT INFORMATION

